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The heat and mass balance equations for diffusion accompanied by chemical reaction in a 
catalyst pellet are solved for reactions following a common class of Langmuir-Hinshelwood 
kinetics and general-order kinetics. An explicit algebraic expression is developed relating 
the effectiveness factor to the kinetic, adsorption, and transport parameters under noniso- 
thermal conditions. This equation can be directly used in fixed-bed reactor calculations 
to take into account the influence of adsorption and intraparticle processes. 

NOMENCLATURE 

dimensionless concentration 
concentration of the reactant A 
concentration of A at the surface 
of the pellet 
effective diffusivity of A in the 
pellet 
activation energy 
kinetic parameter 
kinetic parameter at temperature 
T 
adsorption parameter 
adsorption parameter at temper- 
ature T 
thermal conductivity of the 
pellet 
reaction order 
radial coordinate 
radius of the pellet 
universal gas constant 
temperature 
temperature at the surface of the 
pellet 
dimensionless radial coordinate, 
rlR 
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AH 
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heat of reaction 
adsorption factor, K CAS 
Thiele modulus, R (k [ T,] /De) *e 
modified Thiele modulus 

P De[-AHlC,slK,T, 

Y Arrhenius factor, E/ROT, 
r) effectiveness factor. 

INTRODUCTION 

Simulation of a fixed-bed catalytic reac- 
tor involves simultaneous numerical solu- 
tion of heat and mass balance equations 
for the reactor. When intraparticle gra- 
dients are important the particle equations 
get coupled with the fluid phase equations. 
In such instances in order to evaluate the 
global rate at every grid point in the reac- 
tor it also becomes necessary to solve the 
heat and mass balance equations for the 
pellet. An analytical solution to the pellet 
equations can be obtained only for a first 
order reaction occurring in an isothermal 
pellet, and a numerical solution becomes 
necessary when the kinetic expression is 
nonlinear. Moreover a number of systems 
of practical importance, such as oxidation 
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of ethylene and hydrogenation of benzene, 
exhibit nonisothermal pellet behavior (2). 

Since the pellet equations constitute a 
nonlinear boundary value problem, a con- 
siderable computational effort will be in- 
volved in the fixed-bed calculations. How- 
ever, the computational time can be signifi- 
cantly reduced by obtaining an algebraic 
equation expressing the effectiveness 
factor in terms of system parameters. This 
approach has been followed by Car-berry 
(2), Jouven and Aris (3), and Rajad- 
hyaksha and Vasudeva (4) for first-order 
reactions and by Liu (5) for first- and 
second-order reactions. 

However, a large number of systems 
follow nonfirst-order kinetics. The engi- 
neering approach to kinetic data fitting in- 
volves fitting of a general-order kinetic ex- 
pression which many times results in a 
fractional-order equation. In a number of 
cases where the systems involved intrin- 

sically follow Langmuir-Hinshelwood 
(L-H) type of kinetics, no single value of 
reaction order represents the kinetic data 
satisfactorily over the entire partial pres- 
sure range of interest. In such cases resort 
to L-H type of kinetic expressions be- 
comes necessary. Due to the frequent 
need to use these nonfirst-order kinetic 
expressions, it is desirable to obtain alge- 
braic expressions for the effectiveness 
factor for reaction obeying L-H and gen- 
eral-order kinetics. In the present work 
such correlations are developed for reac- 
tions following a common class of L-H 
kinetics and those following general-order 
kinetics. 

A large number of numerical solutions 
for the effectiveness factor over a wide 
range of parameters is necessary for fitting 
such correlations. Since the solutions re- 
ported in the literature cover only a few 
special cases, it was necessary to obtain 

FIG. I. Effectiveness factor vs Thiele modulus plots for isothermal pellet. (-) Langmuir-Hinshelwood 
kinetics; (--) general-order kinetics. 
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the solutions as an essential first step. The 
results of these computations (expressed 
as 7 vs $I plots) are also presented since 
they will serve as useful additions to ex- 
isting plots and will also bring out certain 
salient features of the solutions. 

EFFECTIVENESS FACTOR 
SOLUTIONS FOR LANGMUIR- 

HINSHELWOOD AND GENERAL- 
ORDER KINETICS 

Langmuir-Hinshelwood Kinetics 

Even though effectiveness factor solu- 
tions for first-order reactions have been 
studied extensively, very little has been 
reported (6-Z 1) for reactions following 
L-H type of kinetic expressions. The 
reason probably is that these kinetic ex- 
pressions involve many parameters, and 

each of these expressions needs to be dealt 
with individually. Roberts and Satterfield 
(6) attempted a generalized approach by 
classifying these models into two classes. 
Making use of the fact that the concentra- 
tions of various reacting species within the 
pellet are linearly related to one another, 
they showed that a class of L-H models 
can be reduced to the following form: 

r= (k CA/1 + K C,). (1) 

They obtained the effectiveness factor 
solutions using this kinetic expression 
assuming isothermal conditions and slab 
geometry. 

Effectiveness factor solutions in the 
presence of adsorption in a nonisothermal 
pellet have been reported by Hutchings 
and Carberry (9). But they did not use the 
generalized kinetic expression given by 
Roberts and Satterfield (6) and hence two 

FIG. 2. Effectiveness factor vs Thiele modulus plots; y = 20, /3 = 0.1. (-) Langmuir-Hinshelwood 
(---) general-order kinetics. 

kinetics; 
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FIG. 3. Effec :ti veness factor vs Thiele modulus plots; y = 30, p = 0.1. (-) Langmuir-Hinsht 
(---) general-order kinetics. 

0.1 1.0 109 1000 
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adsorption parameters were involved in 
the solution. In the present work the gen- 
eral expression given by Eq. (I) will be 
considered. 

By using Eq. (1) to represent the reac- 
tion rate, the following heat and mass bal- 
ance equations for the pellet can be readily 
written for a reaction involving no change 
in moles: 

De d I 1 ,.z dCA -- -_ k[T] CA 
r2 dr dr 1 + K[T] CA = O9 (2) 

and 

.-r2dT K d 
r2 dr [ 1 dr 

+ [--AHlk[Tl CA = o 

l+K[T]C, ’ 
(3) 

with boundary conditions: 

dTldr = 0 d CAldr = 0 at r = 0, and (4) 

:Iwood kinetics; 

For a rigorous solution of this set of equa- 
tions both the rate and adsorption con- 
stants are required to be expressed as a 
function of temperature. A considerabIe 
degree of simplicity can, however, be in- 
troduced by assuming that the ,effect of 
temperature on the adsorption constant K 
is negligible as compared to that on the 
rate constant k. Thus, the following set of 
dimensionless equations can be written in 
which the rate constant k alone is ex- 
pressed by an Arrhenius type equation: 

-9IclV exp Ip+yp c1 _ cl [l -cl = 0, (6) 

with 

dc -= 
dx ’ 

atx=O, and 

C=l atx= 1, (7) 
T=T,,CA=CASatr=R. (5) where 
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FIG. 4. Effectiveness factor vs Thiele modulus plots; y = 20, p = 0.2. (-) Langmuir-Hinshelwood kinetics: 

THIELE MODULUS, 9 

(---) general-order kinetics. 

f[cl =&p 

c$ = R(k[T,]/De)“‘, 
a = (De[-AH]C,,/K T,), 

Y = (E/&T,), 0 = K C/i,. 

These equations were solved on an 
IBM-1620 computer by using the Runge- 
Kutta-Gill procedure. The Newton- 
Raphson method explained by Hlavacek 
and Kubicek (12) was used for con- 
vergence. When this method failed to con- 
verge the procedure explained by Weisz 
and Hicks (23) was used. 

The correctness of the solutions can be 
judged by comparing them with the re- 
ported solution for certain limiting cases. 
An analytical solution is available for 
isothermal first-order reactions (13). The 
solutions obtained for p = 0 and w = 0 
were compared with those obtained from 

this expression and the two were found to 
be identical. Second, nonisothermal solu- 
tions for a first-order reaction are reported 
by Weisz and Hicks (13). The solutions 
obtained for w = 0, y = 20, and /3 = 0.1, 
0.2 were compared with Weisz and Hick’s 
solutions and were found to coincide com- 
pletely. 

Having established the correctness of 
the numerical solutions obtained, it would 
be interesting now to consider the effect 
of nonisothermicity and adsorption simul- 
taneously. The solutions for a few specific 
values of the parameters /3, y, and o are 
presented in Figs. 1-5. Figure 1 shows the 
q-+ solutions for an isothermal pellet. For 
a given value of C#I the effectiveness factor 
increases with increase in the value of o. 
This can be easily conceived as with in- 
crease in o, the fall in the concentration of 
A has a decreasing influence on the reac- 
tion rate and hence diffusional influence 
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FIG. 5. Effectiveness factor v\ l‘hiele modulus plots; y = 20, p = -0.05. (-) Langmuir-Hinshelwood 
kinetics; (---) general-order kinetics. 

will be less pronounced at higher values of 
w. 

However, under nonisothermal condi- 
tions (Figs. 2-4) while this trend is main- 
tained at higher values of c$, there is a 
reversal of trend in the low r#~ region. The 
effectiveness factor decreases with the 
parameter o at low values of 4. As stated 
earlier, for a given value of C#J, the reaction 
rate increases with the decrease in the 
value of o. The higher reaction rate at 
lower values of w results in steeper tem- 
perature gradients. In Table 1, the values 
of intraparticle temperature rise are illus- 

TABLE 1 
INTRAPARTICLE TEMPERATURE RISE FOR VARIOUS 

VALUES OF 0 AT a#~ = 1, p = 0.2, 
y = 20, AND T, = 600°K 

0 -0.5 0.0 1.0 5.0 

W”Cl 74.6 33.6 13.2 3.6 

trated for += 1, /3=0.2, and y= 20 
assuming the temperature at the surface to 
be 600°K. The severity of temperature gra- 
dients at lower values of o is responsible 
for the reversal of the trend. Higher values 
of c#J[~ > lo], however, the temperature 
rise is the same for all values of w, and 
hence the trend of variation of r) with o 
reverts to that under isothermal condi- 
tions. Due to these opposing trends at low 
and high values of C#J, the curves for dif- 
ferent values of o intersect one another in 
the intermediate region. From the same 
consideration, it can be argued that no 
such reversal should be observed in the 
case of endothermic reactions. This is 
apparent from Fig. 5. 

General-Order Reactions 

The nonisothermal effectiveness factor 
solutions for reactions following nth-order 
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MODIFIED THIELE MOOULlJS,+ 

FIG. 6. Effectiveness factor vs modified Thiele modulus plots for y = 20 and /I = 0.1 (Langmuir- 
kinetics). 

-Hinshelwood 

kinetics are presented in the literature for 
zero-order (24) first-order (13), and 
second-order (2) reactions. However, a 
large number of solutions for a wide para- 
meter range is necessary for the present 
analysis. Hence solutions were obtained 
for orders l/2, 1, 3/2, and 2 for different val- 
ues of the other parameters. 

The mass balance equation for the pellet 
for an nth-order reaction can be obtained 
by substituting 

f [c] = c” (10) 

A GENERALIZED EXPRESSION FOR 
EFFECTIVENESS FACTOR 

Langmuir-Hinshelwood Kinetics 

The asymptotic expression for the effec- 
tiveness factor for the kinetic model given 
by Eq. (1) can be obtained using the ex- 
pression given by Petersen (15). Thus: 

v==p (1 +w)x 

[I 

1 
0 1 +‘,c exp 

P-Y [l-cl 
l+p[l-c] dc. 1 

112 
* (12) 

in Eq. (6). The Thiele modulus will be As an 
defined as 

approximation, the factor 
(l/l + UC) in the integrand may be re- 

4 = R Vkc’&‘lD, (11) placed by its average value and taken out 
of the integral sign. The average value of 

The numerical procedures discussed ear- this factor in the interval [0, l] is given by 
lier were used to solve this equation. The 
results of the computations are included in 

I 

1 

Figs. 1-5. 
o &dc=iln [l +o]. (13) 
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FIG. 7. Effectiveness factor vs modified Thiele modulus plots for Langmuir-Hinshelwood kinetics. 

B Y 
1 Gthermd- 
2 0.1 20 
3 0.1 30 
4 0.2 20 

Substituting in Eq. (12), 

r) = 3(2)1’* 
4’ 

[I py [l-c] 
lcexp l+p[l-c] 

& I’* 1 , (14) 
0 

where 4 is a modified Thiele modulus 
given by 

(#/+L ( > 
112 

1 +o In [lo+01 ’ (15) 

Now, it can be seen that Eq. (14) is the 
same as the asymptotic expression of the 
effectiveness factor for a first-order reac- 
tion. Hence by defining a modified Thiele 
modulus, the 7-4 relationship for the 
model given by Eq. (1) is reduced to that 
for a first-order reaction in the asymptotic 

region. Thus the curves for different values 
of w should coincide with that for a first- 
order reaction for given values of p and y. 

To check the validity of this approxi- 
mation, the effectiveness factor is plotted 
against the modified Thiele modulus 4’ in 
Fig. 6 for @ = 0.1 and y = 20. The curves 
for different values of o > 0 coincide com- 
pletely with that for w = 0 (first order) 
when 4 > 5 and tend to separate out for 4’ 
less than 5. However, they lie within 10% 
from the mean value up to 4 = 2. For 
o < 0, the separation of curves occurs at 
C#J’ < 6. Thus the approximation is valid for 
the following conditions: 

and 

[l] 0 > 0, 4’ > 2; 
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TABLE 2 
COMPARISON OF THE VALUES OF EFFECTIVENESS 

FACTOR FROM NUMERICAL SOLUTION WITH 
THOSE CALCULATED USING EQUATION (16) 

FOR THE LANGMUIR-HINSHELWOOD 
KINETIC MODEL 

Effectiveness factor 

From 
numerical From 

Y P w 4 4’ solution Eq. (16) 

20 0.2 1 3.5 2.10 2.30 2.299 
20 0.2 1 9.8 5.9 1.01 1.081 
20 0.2 1 20.0 12.0 0.55 0.548 
20 0.2 1 50.0 30.0 0.22 0.220 
20 0.2 5 7.5 2.1 2.20 2.299 
20 0.2 5 10.6 3.0 1.70 1.898 
20 0.2 5 21.0 5.9 1.00 1.081 
20 0.2 10 11.3 2.1 2.42 2.299 
20 0.2 10 31.6 5.9 1.071 1.081 
20 0.2 -0.5 3.5 5.9 0.92 1.081 
20 0.2 -0.5 7.1 12.0 0.51 0.548 
20 0.2 -0.5 29.4 50.0 0.126 0.134 
30 0.1 5 8.6 2.40 1.62 1.567 
30 0.1 5 17.9 5.0 0.90 0.934 
30 0.1 5 43.0 12.0 0.40 0.416 
30 0.1 10 26.9 5.0 0.97 0.934 
30 0.1 10 64.5 12.0 0.43 0.416 
30 0.1 -0.5 2.9 5.0 0.84 0.934 
30 0.1 -0.5 7.1 12.0 0.43 0.416 
30 0.1 -0.5 19.4 33.0 0.151 0.154 
30 0.1 1 4.0 2.4 1.69 1.567 
30 0.1 1 20.0 12.0 0.42 0.416 
30 0.1 1 33.4 20.0 0.26 0.256 

[6] w < 0, 4’ > 6. 

Similar behavior was observed for the 
other sets of values of /3 and y, i.e., 

p = 0.2, y = 20; p = 0.1, y = 30; and 
isothermal. Fig. 7 shows the mean q-4’ 
curves for these sets of values of /? and y 
over the range of 4’ given above. 

The following correlation between 7 and 
C$ has been obtained by Rajadhyaksha and 
Vasudeva (4) for a first order reaction 
valid for 4 < 2, > 8, /3r < 6: y 

q = (exp [1.172 /3(v)] - 1) 
(ew WI - 1) + X, (16) 

where 

(17) 

Since the 7-4 ’ curves have been shown 
above to coincide with the first-order 
curves over the specified range, Eq. (16) 
should also represent the relation between 
7 and 4’. Thus values of the effectiveness 
factor were computed using Eq. (16) re- 
placing the Thiele modulus in Eq. (17) by 
the modified Thiele modulus 4’. The com- 
puted values are compared with those ob- 
tained from numerical solution in Table 2. 
The average absolute deviation is 4.43% 
and maximum deviation 11.4%. Thus Eq. 
(16) with + replaced by 4’ can be used as 
an expression for the effectiveness factor 
which takes into account the effect of noni- 
sothermicity as well as adsorption. 

General-Order Reaction 

The asymptotic expression for the effec- 
tiveness factor for nth order kinetics is 

3(v”i-) 
rl=- 4 

II 
1 El -cl 1 112 

0 
cn ew lyp L1 _ c3 dc . (18) 

The factor c”-’ may be replaced by its 
average value over the interval [0, l] and 
taken out of the integral sign. By following 
a procedure similar to that for L-H kinetic 
models, a modified modulus can now be 
defined as 

4’ = (vFz)4. (19) 

Liu (5) has used the empirical relation 

4’ = 1.33 4 (20) 

for a second-order reaction. However, ac- 
cording to Eq. (19), 4’ should be given by 
1.41 4. 

The correlation given by Eq. (16) can 
thus be extended to general-order kinetics 
by incorporating the modified modulus de- 
fined by Eq. (19) in Eq. (15). The values of 
the effectiveness factor computed from the 
correlation are compared with those ob- 
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TABLE 3 
COMPARISON OF THE VALUES OF EFFECTIVENESS 

FACTOR OBTAINED FROM NUMERICAL 
SOLUTION WITH THOSE CALCULATED 

USING THE CORRELATION GIVEN 
BY EQUATION (16) FOR 

GENERAL-ORDER KINETICS 

Effectiveness factor 

From 
From numerical 

Y B 7 Q Eq. (16) solution 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
30 
30 
30 
30 
30 
30 

0.1 2.0 4 0.710 0.640 
0.1 2.0 6 0.495 0.465 
0.1 2.0 8 0.378 0.360 
0.1 2.0 10 0.306 0.306 
0.1 2.0 30 0.104 0.105 
0.1 1.5 4 0.802 0.720 
0.1 1.5 8 0.433 0.420 
0.1 1.5 10 0.351 0.350 
0.1 1.5 30 0.121 0.121 
0.1 0.5 3 1.390 1.300 
0.1 0.5 8 0.710 0.630 
0.1 0.5 30 0.206 0.180 
0.2 0.5 3 2.292 2.300 
0.2 0.5 8 1.12 1.000 
0.2 0.5 30 0.315 0.295 
0.2 2.0 6 0.77 0.660 
0.2 2.0 10 0.47 0.420 
0.2 2.0 30 0.158 0.150 
0.1 2.0 4 0.837 0.750 
0.1 2.0 8 0.442 0.420 
0.1 2.0 20 0.181 0.180 
0.1 0.5 4 1.425 1.420 
0.1 0.5 8 0.837 0.800 
0.1 0.5 20 0.356 0.345 
0 0.5 3 0.788 0.770 
0 0.5 5 0.609 0.560 
0 0.5 9 0.397 0.360 
0 0.5 20 0.134 0.120 

tamed from numerical solution in Table 3. 
The correlation predicts the values of the 
effectiveness factor to within 15% in the 
range 4’ > 4. 

An inspection of Eqs. (15) and (19) 
shows that they can be combined to give 
the following general expression for the 
modified Thiele modulus: 

(Vn) @=tJ 1 f. Cd In [l”+ 03 > ’ (**) 
For L-H kinetics n = 1 and this equation 
reduces to Eq. (15), while for general- 

order kinetics w = 0 and this reduces to 
Eq. (19). 

CONCLUSIONS 

The 77-4 plots for general order and a 
class of L-H kinetic models can be made 
to coincide with one another by defining a 
modified Thiele modulus in terms of the 
usual Thiele modulus and an excess term 
characteristic of the kinetic expression. In 
L-H kinetics this excess term is defined in 
terms of the adsorption parameter w, the 
definition of the modified modulus being 
given by Eq. (15). On the other hand, for 
general-order kinetics, the excess term is 
merely the square root of the reaction 
order and the modified modulus is given by 
Eq. (19). 

By making use of the modified modulus 
as defined above, the effectiveness factor 
can be calculated for given values of p, y, 
and C#I from a simple algebraic equation, 
Eq. (16). This equation is valid for 

4’ > 2, py < 6, y > 8 for w > 0 
4’ > 6,py < 6,~ > 8 forw < 0 

and 4’ > 4, Py < 6, y > 8 
for 0.5 < n < 2. 

As can be seen from the values reported in 
the literature (I) for various systems, the 
range of parameters p and y covered by 
the correlation is realistic. Parameters 4’ 
and w depend upon the kinetic constants 
which vary over a wide range and the cor- 
relation covers a major part of this range. 
Thus by making use of the equations and 
procedures outlined in this paper, it is pos- 
sible to describe the effectiveness factor 
for a variety of reactions by a simple alge- 
braic expression which can be incorpo- 
rated in any procedure for the design and 
simulation of fixed-bed reactors. 
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